

PFE 216

- Low height
- Long term capacitance stability
- Low and reproducible temperature coefficient
- Very low dissipation factor
- Very high insulation resistance

Applications

High stability LC-filters as well as RC-filters, timing.

Basic design

PFE 216 uses polystyrene (PS) as a dielectric. The electrodes consist of foils. The extended foil design has the terminal leads soldered directly to the foils.

Encapsulated in self-extinguishing epoxy resin (UL 94 V-0).

Specification

Rated voltage U_B Rated capacitance C_R Capacitance tolerance $\Delta C/C_B$ Climatic category

100 VDC 200 VDC 1.5-250 nF 1-100 nF $\pm 1\%$, $\pm 2\%$, $\pm 5\%$ (minimum ± 2 pF)

500 VDC 0.47-55 nF

40/85/21

for C \geq 33nF U_R= 100 VDC 40/85/56

384-7, Stability class 1

Space required on masssoldered PC boards.

Technical data

Dissipation factor

IEC standard

 $\tan\delta \le 2 \times 10^4$ for C<100nF at 1 kHz \leq 3×10⁻⁴ forC<100nF at 1 kHz

Temperature coefficient

 $-(110 \pm 30) \times 10^{-6}/^{\circ}$ C

Test voltage

No test between terminals and case. Between terminals 2×U_B.

Humidity resistance

Following requirements are met after 21 days at +40°C and 90-95% RH

Change of capacitance $\Delta C/C \leq 0.5\%$

Insulation resistance: \geq 250 G Ω After 56 days for C≥33000 pF and U_n = 100 VDC

Change of capacitance $\Delta C/C \leq 0.5\%$

Insulation resistance: \geq 10000 M Ω

Insulation resistance

It is measured at +23°C and after 60 sec

Test voltage 100 VDC

Insulation resistance: \geq 500 G Ω

Long term stability

The following requirements of max capacitance instability are met by the capacitor when operated at rated voltage

 $\pm (0.2\% + 0.4 \text{ pF})$ after ≤ 3 years at max +50°C and at an average R.H. of max 70%.

· Reliability

The failure of PFE 216 is so low that reliability data referring to normal operational cannot be achieved in laboratory tests. However, operational statistics for a total of 51 × 109 unit-hours have revealed a mean failure rate of $<10^{-10}/h$.

For B/D/E sizes heavily tinned copper leads. For F size heavily tinned copper clad steel wires.

Article table

U _R	C_{R}	Max dimensions in mm				Max space requirements in mm		Quantity/ package	Weight	Article code 1st block
	nF	L	W	Н		D	E	pcs	g	
	>1.5-8	14.5	6.0	7.0	10.2	6.8	17.0	400	1.3	PFE 216DB
	>8-33	19.0	7.0	8.0	15.2	7.8	21.5	400	2.0	PFE 216DC
100 VDC	>33-100	29.5	8.7	10.0	25.4	9.3	32.0	200	3.5	PFE 216DD
	>100-150	29.5	10.1	12.0	25.4	10.8	32.0	200	5.5	PFE 216DE
	>150-250	29.5	13.5	14.5	25.4	14.3	32.0	150	11.0	PFE 216DF
	>1-1.5	14.5	6.0	7.0	10.2	6.8	17.0	400	1.3	PFE 216GB
	>1.5-8	19.0	7.0	8.0	15.2	7.8	21.5	400	2.0	PFE 216GC
200 VDC	>8-50	29.5	8.7	10.0	25.4	9.3	32.0	200	3.5	PFE 216GD
	>50-70	29.5	10.1	12.0	25.4	10.8	32.0	200	5.5	PFE 216GE
	>70-100	29.5	13.5	14.5	25.4	14.3	32.0	150	11.0	PFE 216GF
	0.047-1	14.5	6.0	7.0	10.2	6.8	17.0	400	1.3	PFE 216LB
	>1-5	19.0	7.0	8.0	15.2	7.8	21.5	400	2.0	PFE 216LC
500 VDC	>5-17	29.5	8.7	10.0	25.4	9.3	32.0	200	3.5	PFE 216LD
	>17-26	29.5	10.1	12.0	25.4	10.8	32.0	200	5.5	PFE 216LE
	>26-55	29.5	13.5	14.5	25.4	14.3	32.0	150	11.0	PFE 216LF

Ordering information

Article code			
Example: 3.15 nF, 1 %			
1st block	Pos 9 No. of digits in the capacitance value (pF)		
See "Article table"	Pos 10-12 The 3 significant digits in the cap value		
	Pos 13 Tolerance code (F = ± 1 %,		
	$G = \pm 2\%, J = \pm 5\%$		
PFE 2 1 6 D B 4 3 1 5 F			
1 2 3 4 5 6 7 8 9 10 11 12 13			

Marking

The capacitors are marked with:

- RIFA
- RIFA article code
- Rated capacitance
- Tolerance on rated capacitance, (see RIFA article code system on page 3)
- Rated voltage
- Code for manufacturing date (month and year)
- type designation unless otherwise specified under each detail specification.

Packing

The capacitors are packed bulk in a box with dimensions $230\times155\times72$ mm for capacitor types PFE 210, 216 and with the dimensions $146\times55\times62$ mm for capacitor types PFE 225, PHE 425.