

TO-220 Plastic Package

CSC2335

CSC2335 NPN PLASTIC POWER TRANSISTOR High Speed, High Voltage Switching

CSC2335

Collector current (Pulse value) (1)	I_C	max.	15 A
Base current (DC)	I_B	max.	3.5 A
Total power dissipation up to $T_C = 25^{\circ}C$	P _{tot}	max.	40 W
Total power dissipation up to $T_A = 25^{\circ}C$	P _{tot}	max.	1.5 W
Junction temperature	T_i	max.	150 C
Storage temperature	T'_{stg}	-65 t	to +150 °C
	0		
THERMAL CHARACTERISTICS			
From junction to case	R _{th j-c}		3.125 °C/W
CHARACTERISTICS			
$T_{amb} = 25^{\circ}C$ unless otherwise specified			
Collector cutoff current			
$I_E = 0; V_{CB} = 400V$	ICBO	max.	10 µA
$R_{BE} = 51\Omega; V_{CE} = 400V; T_A = 125^{\circ}C$	ICER	max.	1.0 mA
$V_{BE(off)} = 1.5V; V_{CE} = 400V$	ICEX	max.	10 µA
$V_{BE(off)} = 1.5V; V_{CE} = 400V; T_A = 125^{\circ}C$	ICEX	max.	1.0 mA
Emitter cut-off current	Imp o		10 1
$I_C = 0; V_{EB} = 5V$	I _{EBO}	max.	10 µA
Breakdown voltages	17*		400 V
$I_C = 3 A; I_{B1} = 0.6A; L = 1mH$	$V_{CEO(sus)}^*$	min.	400 V
$I_C = 1 mA; I_E = 0$	V _{CBO}	min.	500 V
$I_E = 1 mA; I_C = 0$	V_{EBO}	min.	7.0 V
Saturation voltages			
$I_C = 3 A; I_B = 0.6 A$	V_{CEsat}^*	max.	1.0 V
	V_{BEsat}^*	max.	1.2 V
D.C. current gain			
$I_C = 0.1A; V_{CE} = 5V$	h_{FE}^*	min.	20
		max.	80
$I_C = 1A; V_{CE} = 5V^{**}$	hFE*	min.	20
$I_{\mathcal{L}} = III, V_{\mathcal{L}} = 0V$	"TL	max.	20 80
		шал.	80
$I_C = 3A; \ V_{CE} = 5V$	h_{FE}^*	min.	10
Switching time			
$I_C = 3A; R_L = 50\Omega$			
$I_{B1} = -I_{B2} = 0.6A; V_{CC} = 150V$			
Turn on time	t _{on}	max.	1.0 µs
Storage time	t _s	max.	2.5 μs
Fall time	t _f	max.	1.0 μs
	*		F
* Pulse test: $P_W \le 350 \ \mu s$; duty cycle $\le 2\%$ pulsed.			
(1) $P_W \le 300 \ \mu s$; duty cycle $\le 10\%$.			

** h_{FE} classification: R: 20-40 O: 30-60 Y: 40-80

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited C-120 Naraina Industrial Area, New Delhi 110 028, India. Telephone + 91-11-2579 6150, 5141 1112 Fax + 91-11-2579 5290 email@cdil.com www.cdilsemi.com

Data Sheet

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.