Kingbright

Features

- Uniform light emitting area.
- Easily mounted on P.C. boards or industry standard sockets.
- Flush mountable.
- Excellent on/off contrast.
- Can be used with panels and legend mounts.
- Mechanically rugged.
- Bottom surface of epoxy is not flat.
- RoHS compliant.

Description

The High Efficiency Red source color devices are made with Gallium Arsenide Phosphide on Gallium Phosphide Orange Light Emitting Diode.

Package Dimensions

Notes:

1. All dimensions are in millimeters (inches)
2. Tolerance is $\pm 0.25\left(0.01^{\prime \prime}\right)$ unless otherwise noted
3. Lead spacing is measured where the leads emerge from the package.
4. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice.

Kingbright

Selection Guide

Part No.	Dice	Lens Type	Iv (mcd) [2]@ 10mA		Viewing Angle [1]
			Min.	Typ.	201/2
L-895/8IDT	High Efficiency Red (GaAsP/GaP)	Red Diffused	10	15	120°

Notes:

1. $\theta 1 / 2$ is the angle from optical centerline where the luminous intensity is $1 / 2$ of the optical peak value.
2. Luminous intensity/ luminous Flux: $+/-15 \%$.

Electrical / Optical Characteristics at TA $=25^{\circ} \mathrm{C}$

Symbol	Parameter	Device	Typ.	Max.	Units	Test Conditions
λ peak	Peak Wavelength	High Efficiency Red	627		nm	$\mathrm{IF}=20 \mathrm{~mA}$
$\lambda \mathrm{D}[1]$	Dominant Wavelength	High Efficiency Red	625		nm	$\mathrm{IF}=20 \mathrm{~mA}$
$\Delta \lambda 1 / 2$	Spectral Line Half-width	High Efficiency Red	45		nm	$\mathrm{IF}=20 \mathrm{~mA}$
C	Capacitance	High Efficiency Red	15		pF	$\mathrm{VF}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{VF}[2]$	Forward Voltage	High Efficiency Red	2	2.5	V	$\mathrm{IF}=20 \mathrm{~mA}$
IR	Reverse Current	High Efficiency Red		10	uA	$\mathrm{VR}=5 \mathrm{~V}$

Notes:
1.Wavelength: $+/-1 \mathrm{~nm}$
2. Forward Voltage: $+/-0.1 \mathrm{~V}$.

Absolute Maximum Ratings at $\mathrm{TA}=25^{\circ} \mathrm{C}$

Parameter	High Efficiency Red	Units
Power dissipation	75	mW
DC Forward Current	30	mA
Peak Forward Current [1]	160	mA
Reverse Voltage	5	V
Operating/Storage Temperature	$-40^{\circ} \mathrm{C}$ To $+85^{\circ} \mathrm{C}$	
Lead Solder Temperature [2]	$260^{\circ} \mathrm{C}$ For 3 Seconds	
Lead Solder Temperature [3]	$260^{\circ} \mathrm{C}$ For 5 Seconds	

Notes:

1. $1 / 10$ Duty Cycle, 0.1 ms Pulse Width.
2. 2 mm below package base
3. 5 mm below package base.

Kingbright

High Efficiency Red L-895/8IDT

FORWARD VOLTAGE

SPATIAL DISTRIBUTION

Kingbright

Kingbright

PRECAUTIONS

1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead-forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures. (Fig. 1)

Fig. 1
" \bigcirc Correct mounting method " \times " Incorrect mounting method
2. When soldering wire to the LED, use individual heat-shrink tubing to insulate the exposed leads to prevent accidental contact short-circuit. (Fig.2)
3. Use stand-offs (Fig.3) or spacers (Fig.4) to securely position the LED above the PCB.

4. Maintain a minimum of 2 mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6)
5. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7)

Kingbright

6. Do not bend the leads more than twice. (Fig. 8)

Fig. 5

Fig. 6

Fig. 7

Fig. 8
7. During soldering, component covers and holders should leave clearance to avoid placing damaging stress on the LED during soldering.

8. The tip of the soldering iron should never touch the lens epoxy.
9. Through-hole LEDs are incompatible with reflow soldering.
10. If the LED will undergo multiple soldering passes or face other processes where the part may be subjected to intense heat, please check with Kingbright for compatibility.
11. Recommended Wave Soldering Profiles:

Notes:
1.Recommend pre-heat temperature of $105^{\circ} \mathrm{C}$ or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum
solder bath temperature of $260^{\circ} \mathrm{C}$
2. Peak wave soldering temperature between $245^{\circ} \mathrm{C} \sim 255^{\circ} \mathrm{C}$ for 3 sec (5 sec max).
3. Do not apply stress to the epoxy resin while the temperature is above $85^{\circ} \mathrm{C}$.
4. Fixtures should not incur stress on the component when mounting and during soldering process.
5.SAC 305 solder alloy is recommended.
6.No more than one wave soldering pass.

