
PIN Silicon Photodiode OP993, OP999

Features:

- Choice of TO-18 (OP993) or T-1¾ package (OP999)
- · Small package style ideal for space-limited applications
- · Linear response vs. irradiance
- · Fast switching time
- Choice of narrow or wide receiving angle

Description:

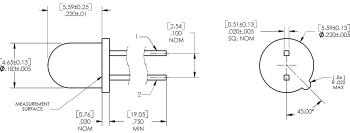
Each OP993 and OP999 device consists of a PIN silicon photodiode molded in a dark blue injection molded shell package that provides excellent optical and mechanical axis alignment, optical lens surface, control of chip placement and consistency of the outside package dimensions.

OP993 has a TO-18 package style and a wide receiving angle that provides excellent on-axis coupling. **OP999** has a T-1½ package style and a narrow receiving angle that provides excellent on-axis coupling.

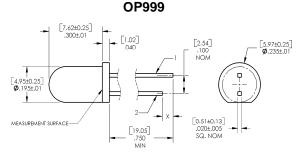
Both devices are 100% production tested for close correlation with OPTEK GaAlAs emitters.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

Applications:


- Non-contact reflective object
- · Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor
- Door sensor

Ordering Information				
Part Number	Sensor	Viewing Angle	Lead Length	
OP993	OP993 Photodiode		0.75 min	
OP999	Photodiode	18°	0.75 111111	



Pin#	Sensor		
1	Cathode		
2	Anode		

OP993

[MILLIMETERS] DIMENSIONS ARE IN: INCHES

OP999

DIMENSIONS ARE IN:	INCHES

Pin#	Sensor	
1	Anode	
2	Cathode	

CONTAINS POLYSULFONE To avoid stress cracking, we suggest using ND Industries' Vibra-Tite for thread-locking.
Vibra-Tite evaporates fast without causing structural failure in OPTEK'S molded plastics

RoHS

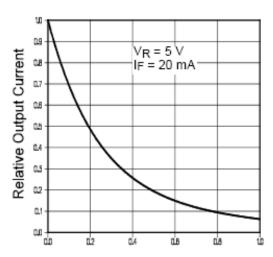
PIN Silicon Photodiode OP993, OP999

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

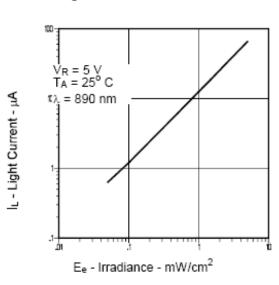
Reverse Breakdown Voltage	60 V
Storage & Operating Temperature Range	-40° C to +100° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from the case for 5 sec. with soldering iron]	260° C ⁽¹⁾
Reverse Breakdown Voltage	60 V
Power Dissipation	100 mW ⁽²⁾

Electrical Characteristics (T_A=25°C unless otherwise noted)

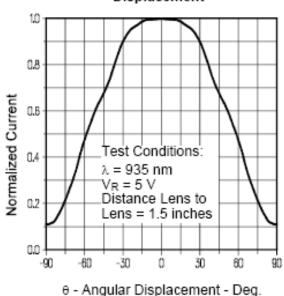
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
IL	Reverse Light Current OP993 OP999	12.5 6.5	1 1	28.5 15	μA	$V_R = 5 \text{ V}, E_E = 1.7 \text{ mW/cm}^{2 (3)}$ $V_R = 5 \text{ V}, E_E = 0.25 \text{ mW/cm}^{2 (3)}$
I _D	Reverse Dark Current		1	60	nA	$V_R = 30 \text{ V}, E_E = 0^{(4)}$
$V_{(BR)}$	Reverse Breakdown Voltage	60			V	I _R = 100 μA
V_{F}	Forward Voltage			1.2	V	I _F = 1 mA
Ст	Total Capacitance		4		pF	V _R = 20 V, E _E = 0, f = 1.0 MHz
t _r	Rise Time		5		ne	$V_R = 20 \text{ V}, \lambda = 850 \text{ nm}, R_L = 50 \Omega$
t _f	Fall Time		5		ns	V _R - 20 V, Λ - 650 IIIII, K _L - 50 Ω


Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to leads when soldering.
- (2) Derate linearly 1.67 mW/° C above 25° C.
- (3) Light source is an unfiltered GaAlAs emitting diode operating at peak emission wavelength of 890 nm and E_{E(APT)} of 1.7 mW/cm² for OP993 and 0.25mW/cm² for OP999 average within a 0.25" diameter aperture.
- (4) This dimension is held to within \pm 0.005" on the flange edge and may vary up to \pm 0.020" in the area of the leads.

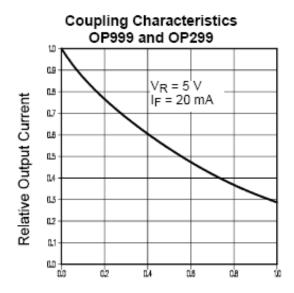

OP993

Coupling Characteristics OP993 and OP293

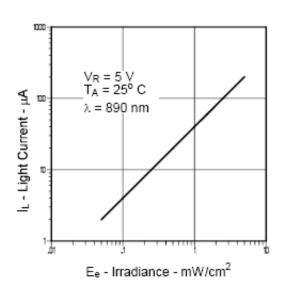


Distance Between Lens tips - inches

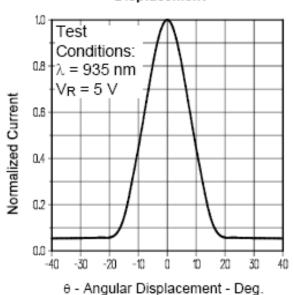
Light Current vs. Irradiance



Light Current vs. Angular Displacement

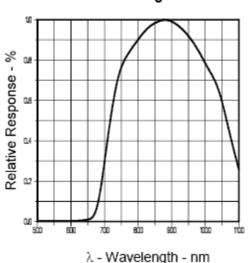


OP999

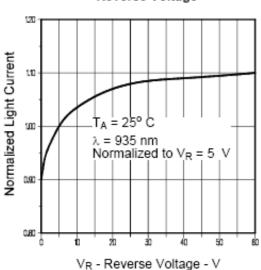


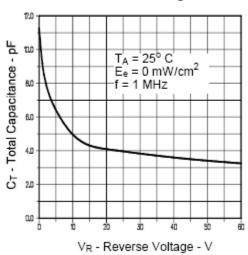
Distance Between Lens Tips - inches

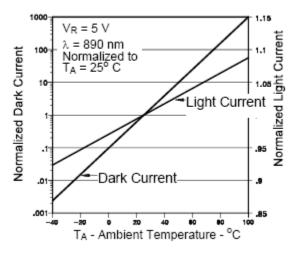
Light Current vs. Irradiance



Light Current vs. Angular Displacement




Relative Response vs. Wavelength


Normalized Light Current vs Reverse Voltage

Total Capacitance vs Reverse Voltage

Normalized Light and Dark Current vs Ambient Temperature

