

High-Power NPN Silicon Transistor

 \dots for use as an output device in complementary audio amplifiers to 100-Watts music power per channel.

- High DC Current Gain
 - $h_{FE} = 25-100$ @ $I_C = 7.5$ A
- Excellent Safe Operating Area
- Complement to the PNP MJ4502

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CER}	100	Vdc
Collector–Base Voltage	V _{CB}	100	Vdc
Collector–Emitter Voltage	V _{CEO}	90	Vdc
Emitter–Base Voltage	V _{EB}	4.0	Vdc
Collector Current	I _C	30	Adc
Base Current	I _B	7.5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	200 1.14	Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\theta_{\sf JC}$	0.875	°C/W

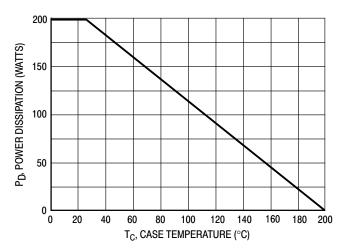


Figure 1. Power-Temperature Derating Curve

MJ802

30 AMPERE
POWER TRANSISTOR
NPN SILICON
100 VOLTS
200 WATTS

CASE 1-07 TO-204AA (TO-3)

MJ802

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			l	1
Collector–Emitter Breakdown Voltage ⁽¹⁾ (I _C = 200 mAdc, R _{BE} = 100 Ohms)	BV _{CER}	100	_	Vdc
Collector–Emitter Sustaining Voltage ⁽¹⁾ (I _C = 200 mAdc)		90	_	Vdc
Collector–Base Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0, T_C = 150^{\circ}\text{C})$	I _{CBO}		1.0 5.0	mAdc
Emitter–Base Cutoff Current (V _{BE} = 4.0 Vdc, I _C = 0)	I _{EBO}	_	1.0	mAdc
ON CHARACTERISTICS ⁽¹⁾				
DC Current Gain ⁽¹⁾ (I _C = 7.5 Adc, V _{CE} = 2.0 Vdc)	h _{FE}	25	100	_
Base–Emitter "On" Voltage (I _C = 7.5 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)}	_	1.3	Vdc
Collector–Emitter Saturation Voltage (I _C = 7.5 Adc, I _B = 0.75 Adc)	V _{CE(sat)}	_	0.8	Vdc
Base–Emitter Saturation Voltage (I _C = 7.5 Adc, I _B = 0.75 Adc)	V _{BE(sat)}	_	1.3	Vdc
DYNAMIC CHARACTERISTICS				-
Current Gain — Bandwidth Product (I _C = 1.0 Adc, V _{CE} = 10 Vdc, f = 1.0 MHz)	f _T	2.0	_	MHz

⁽¹⁾ Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2.0\%$.

MJ802

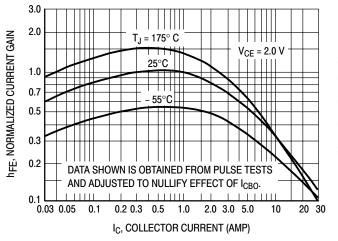


Figure 2. DC Current Gain

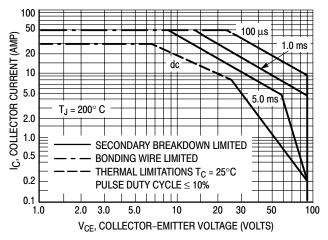
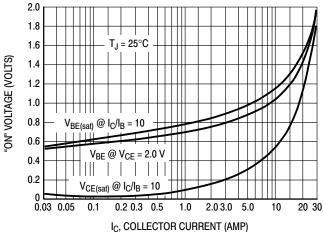
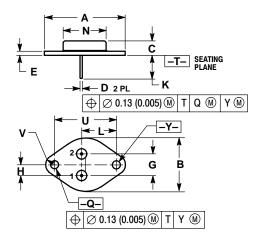


Figure 4. Active Region Safe Operating Area




Figure 3. "On" Voltages

The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not enter secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a catastrophic failure. To insure operation below the maximum T_J , power temperature derating must be observed for both steady state and pulse power conditions.

MJ802

PACKAGE DIMENSIONS

CASE 1-07 TO-204AA (TO-3) **ISSUE Z**

NOTES:

- 1 DIMENSIONING AND TOLERANCING PER ANSI
- 2. CONTROLLING DIMENSION: INCH.
- 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.550 REF		39.37 REF		
В		1.050		26.67	
С	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
Е	0.055	0.070	1.40	1.77	
G	0.430 BSC		10.92 BSC		
Н	0.215 BSC		5.46 BSC		
K	0.440	0.480	11.18	12.19	
L	0.665 BSC		16.89 BSC		
N		0.830		21.08	
Q	0.151	0.165	3.84	4.19	
U	1.187 BSC		30.15 BSC		
٧	0.131	0.188	3.33	4.77	

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com

Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.