lue binder, tab (

FAST GATE TURN-OFF THYRISTORS

Thyristors in TO-220AB envelopes capable of being turned both on and off via the gate. They are suitable for use in high-frequency inverters, resonant power supplies, motor control, horizontal deflection systems etc. The devices have no reverse blocking capability. For reverse blocking operation use with a series diode, for reverse conducting operation use with an anti-parallel diode.

QUICK REFERENCE DATA

			BTW58-1000R	1300R	1500R	
Repetitive peak off-state voltage	v_{DRM}	max.	1000	1300	1500	٧
Non-repetitive peak on-state current	^I TSM	max.		50		Α
Controllable anode current	TCRM	max.		25		Α
Average on-state current	¹ T(AV)	max.		6.5		Α
Fall time	tf	<		250		ns

MECHANICAL DATA

Dimensions in mm

Fig.1 TO-220AB

Net mass: 2 q

Note: The exposed metal mounting base is directly connected to the anode.

Accessories supplied on request: see data sheets Mounting instructions and accessories for TO-220 envelopes.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Anode to cathode			BTW58-100	00R (1300R	1500R	
Transient off-state voltage	V _{DSM}	max.	. 120	00	1500	1650	V*
Repetitive peak off-state voltage	VDRM	max.	100	00	1300	1500	V*
Working off-state voltage	v_{DW}	max.	69	50	1200	1300	V*
Continuous off-state voltage	v_D	max.	6	50	750	800	V*
Average on-state current (averaged 20 ms period) up to Tmb = 85 °C			^I T(AV)	max	x.	6.5	Α
Controllable anode current			ITCRM	max	x.	25	Α
Non-repetitive peak on-state curre t = 10 ms; half-sinewave;	nt						
T _j = 120 °C prior to surge			TSM	ma	х.	50	Α
1^2 t for fusing; t = 10 ms			l²t	max	х.	12.5	A²s
Total power dissipation up to T_{ml}	_b = 25 °C		P _{tot}	ma	×.	65	W
Gate to cathode							
Repetitive peak on-state current $T_j = 120$ °C prior to surge gate-cathode forward; t = 10 ms	v half einm	Menvo	locu	ma		25	Α
gate-cathode reverse; $t = 20 \mu s$	s, nam-sinev	wave	^I GFM ^I GRM	ma		25 25	Â
Average power dissipation (average	ed over any	ď	GRIVI				
20 ms period)	04 0 VO. U	,	PG(AV)	max	x.	2.5	W
Temperatures							
Storage temperature			T_{stg}		-40 t	o +150	oC
Operating junction temperature			τ_{j}	ma	х.	120	οС
THERMAL RESISTANCE							
From junction to mounting base			R _{th j-mb}	==		1.5	K/W
From mounting base to heatsink with heatsink compound			R _{th mb-h}	=		0.3	K/W
with 56367 alumina insulator a heatsink compound (clip-moun			R _{th mb-h}	=		0.8	Κ/W

^{*}Measured with gate-cathode connected together.

CHARACTERISTICS

Δn	aho	to	cath	ode

Anode to cathode				
On-state voltage $I_T = 5 \text{ A}$; $I_G = 0.2 \text{ A}$; $T_j = 120 \text{ °C}$	v_{T}	<	3.0	V*
Rate of rise of off-state voltage that will not trigger any off-state device; exponential method $V_D = 2/3 \ V_{Dmax}; V_{GR} = 5 \ V; T_j = 120 \ ^{\circ}C$	dV _D /dt	<	10	kV/μs
Rate of rise of off-state voltage that will not trigger any device following conduction, linear method I _T = 5 A; V _D = V _{DRMmax} ; V _{GR} = 10 V; T _j = 120 °C	dV _D /dt	<	1.5	kV/μs
Off-state current V _D = V _{Dmax} ; T _j = 120 °C	ID	<	3.0	mA
Latching current; T _j = 25 °C	IL	typ.	1.0	A**
Gate to cathode				
Voltage that will trigger all devices $V_D = 12 \text{ V}; T_j = 25 ^{\circ}\text{C}$	v_{GT}	>	1.5	V
Current that will trigger all devices $V_D = 12 \text{ V}; T_j = 25 ^{\circ}\text{C}$	I _{GT}	>	200	mA
Minimum reverse breakdown voltage IGR = 1.0 mA	V _{(BR)GR}	>	10	V
Switching characteristics (resistive load)				
Turn-on when switched to $I_T = 5$ A from $V_D = 250$ V with $I_{GF} = 0.5$ A; $T_j = 25$ °C				
delay time	t _d	<	0.25	μs

delay time rise time

Fig.2 Waveforms

μs

1.0

- Measured under pulse conditions to avoid excessive dissipation.
- ** Below latching level the device behaves like a transistor with a gain dependent on current.

Switching characteristics (inductive load)

Turn-off when switched from I
$$_T$$
 = 5 A to V $_D$ = V $_D$ RMmax, V $_G$ R = 10 V; L $_G$ \leq 1.0 μ H; L $_S$ \leq 0.25 μ H; T $_j$ = 25 °C storage time t $_f$ $<$ 0.5 μ s fall time t $_f$ $<$ 0.25 μ s peak reverse gate current I $_G$ R $<$ 6 A

Fig.3 Waveforms,

Fig.4 Inductive load test circuit

^{*}Indicates stray series inductance only.

Fig.5 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures.

$$a = form factor = \frac{IT(RMS)}{IT(AV)}$$

P = power excluding switching losses.

 $^{^*} T_{mb}$ scale is for comparison purposes and is correct only for R $_{th\ mb\text{-}a} \! < \! 9.6$ K/W.

Fig.6 Anode current which can be turned off versus anode voltage; inductive load; VGR = 10 V; LG \leq 1.0 μH ; LS \leq 0.25 μH ; T $_{j}$ = 85 °C. *dVD/dt is calculated from IT/CS.

Fig.7 Anode current which can be turned off versus applied dV_D/dt^* ; inductive load; $V_{GR} = 10 \text{ V}$; $L_G \le 1.0 \ \mu\text{H}$; $L_S \le 0.25 \ \mu\text{H}$. * dV_D/dt is calculated from l_T/C_S .

Fig.8 Anode current which can be turned off versus applied dV_D/dt^* ; inductive load; V_{GR} = 5 V; $L_G \le 1.0 \ \mu H$; $L_S \le 0.25 \ \mu H$. * dV_D/dt is calculated from I_T/C_S .

Fig.9 Minimum gate voltage that will trigger all devices as a function of junction temperature; $V_D = 12 \text{ V}$.

Fig.10 Minimum gate current that will trigger all devices as a function of junction temperature; V_D = 12 V.

Fig.11 Maximum V_T versus I_T ; ---- T_j = 25 °C; --- $-T_j$ = 120 °C.

Fig.12 Peak reverse gate current versus anode current at turn-off; inductive load; VGR = 10 V; IG = 0.2 A; LG = 0.8 μ H; T $_i$ = 120 °C; maximum values.

Fig.13 Peak reverse gate current versus applied reverse gate voltage; inductive load; I_T = 5 A; I_G = 0.2 A; L_G = 0.8 μ H; T_j = 120 °C; maximum values.

Fig.14 Switching times as a function of junction temperature; V $_D \geqslant$ 250 V; I $_T$ = 5 A; I $_GF$ = 0.5 A; V $_GR$ = 10 V; I $_G$ = 0.2 A; L $_G$ = 0.8 μH ; maximum values.

Fig.15 Transient thermal impedance.

Fig.16 Storage and fall times versus applied reverse gate voltage; inductive load; I_T = 5 A; I_G = 0.2 A; L_G = 0.8 μ H; T_j = 25 °C; maximum values.

Fig.17 Maximum energy loss at turn-off (per cycle) as a function of anode current and applied dVD/dt (calculated from IT/CS); reapplied voltage sinsusoidal up to VDRM = 1200 V; VGR = 10 V; IG = 0.2 A; LG \leq 1.0 μ H; LS \leq 0.25 μ H; Tj = 120 °C.

Fig.18 Energy loss at turn off as a function of junction temperature; I $_G$ = 0.2 A; V $_{G\,R}$ = 10 V. Normalised to T $_j$ = 120 °C.