Compact Single-pole Relay for Switching

 5 A (Normally Open Contact), Fan Control of Air Conditioners, and Heating Control of Small Appliances.■ ROHS compliant.
■ Compact SPDT Relay with high insulation.
■ Incorporates a normally open contact that switches 5 A max.
■ Ensures a withstand impulse voltage of $8,000 \mathrm{~V}$ between the coil and contacts.
■ Conforms to UL, CSA and EN.

Ordering Information

Classification	Contact form	Enclosure ratings	Model
Standard	SPDT-NO	Fully sealed	G5SB-14

Note: When ordering, add the rated coil voltage to the model number.
Example: G5SB-14 $\frac{12 \text { VDC }}{\square}$ Rated coil voltage

Model Number Legend
G5SB- VDC $12 \overline{3}$

1. Number of Poles

1: 1 pole (SPDT)
2. Protective Structure

4: Fully sealed

Specifications

■ Coil Ratings

Rated voltage	5 VDC	9 VDC	12 VDC	24 VDC
Rated current	80 mA	44.4 mA	33.3 mA	16.7 mA
Coil resistance	63Ω	202Ω	360Ω	$1,440 \Omega$
Must operate voltage	75% max. of rated voltage			
Must release voltage	5% min. of rated voltage			
Max. voltage	110% of rated voltage			
Power consumption	Approx. 400 mW			

Contact Ratings

Load	Resistive Load
Rated load	$3 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 125 VAC 5 A (NO)/3 A (NC) at 125 VAC $5 \mathrm{~A}(\mathrm{NO})$ at 250 VAC 3 A (NC) at 250 VAC $5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 30 VDC
Contact material	Ag alloy
Rated carry current	$5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$
Max. switching voltage	250 VAC, 30 VDC
Max. switching current	$5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$
Max. switching capacity	$\begin{aligned} & 1,250 \mathrm{VA}, 150 \mathrm{~W}(\mathrm{NO}) \\ & 750 \mathrm{VA}, 30 \mathrm{~W}(\mathrm{NC}) \end{aligned}$
Min. permissible load	10 mA at 5 VDC

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation (with an operating frequency of 120 operations $/ \mathrm{min}$)

Characteristics

Contact resistance (see note 2)	$100 \mathrm{~m} \Omega$ max.
Operate time (see note 3)	10 ms max.
Release time (see note 3)	5 ms max.
Insulation resistance (see note 4)	1,000 M 2 min.
Dielectric strength	4,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	8 kV (1.2 x $50 \mu \mathrm{~s}$)
Vibration resistance	Destruction: 10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude) Malfunction: 10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100 G) Malfunction: Energized: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10 G) Non-energized: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10 G)
Endurance (see note 5)	Mechanical: 5,000,000 operations (18,000 operations per hour) Electrical: 200,000 operations: $3 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 125 VAC resistive load 50,000 operations: $5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 125 VAC resistive load 50,000 operations: 5 A (NO) at 250 VAC resistive load 10,000 operations: 3 A (NC) at 250 VAC resistive load 10,000 operations: $5 \mathrm{~A}(\mathrm{NO}) / 3 \mathrm{~A}(\mathrm{NC})$ at 30 VDC resistive load Switching frequency: 1,800 operations per hour
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ with no icing or condensation
Ambient humidity	Operating: 5\% to 95\%
Weight	Approx. 6.5 g

Note: 1. The data shown above are initial values.
2. The contact resistance is possible with 1 A applied at 5 VDC using a fall-of-potential method.
3. The operating time is possible with the operating voltage imposed with no contact bounce at an ambient temperature of $23^{\circ} \mathrm{C}$.
4. The insulation resistance is possible between coil and contacts and between contacts of the same polarity at 500 VDC.
5. The electrical durability data items shown are possible at $23^{\circ} \mathrm{C}$.

Approved Standards

UL508 (File No. E41515)/CSA C22.2 (No.14) (File No. LR31928)
EN 61810-1 (VDE Reg. no 40000957)

Model	Coil ratings	Contact ratings
G5SB	5 to 24 VDC	$3 \mathrm{~A}, 125$ VAC (resistive) NC only
		$2 \mathrm{~A}, 125$ VAC (resistive) NC only
		$5 \mathrm{~A}, 250$ VAC (resistive) NO only
		$3 \mathrm{~A}, 250$ VAC (resistive) NO only
		$5 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive) NO only

Electrical endurance tests are performed at $70^{\circ} \mathrm{C}$.

Engineering Data

Max. Switching Capacity

Ambient Temperature vs. Maximum Voltage

Dimensions

Note: All units are in millimeters unless otherwise indicated.

PCB Mounting Holes (Bottom View)

Tolerance: $\pm 0.1 \mathrm{~mm}$

Terminal Arrangement/
Internal Connections (Bottom View)

(No coil polarity)

Note: Values in parentheses are average values.

Application Examples

- Fan Motor
- Refrigerator
- Oven
- Washing Machine
- Air Conditioner
- Others

