

Multi-Layer Ceramic Capacitor

C-S3-5-00

Y5V Dielectrics

■ Features

- A monolithic structure ensures high reliability and mechanical strength.
- High capacitance density.
- A wide range of capacitance values in standard case size.
- Suitable for high speed SMT placement on PCBs.
- Ni barrier termination highly resistance to migration.
- Lead-free termination is in compliance with the requirement of green plan and ROHS.

Applications

- General electronic equipment.
- Communication equipment.
- Custom Application

■ Y5V Dielectric Characteristics

Capacitance Range	10nF to 100uF				
Size (mm)	0603 1005 1608 2012 3216 3225				
(EIA inch)	(0201) (0402) (0603) (0805) (1206) (1210)				
Test Voltage	1.0 ± 0.2Vrms (0.5±0.1Vrms for cap>10uF)				
Test Frequency	1.0 ± 0.2KHz (120Hz±10% for cap>10uF)				
Capacitance Tolerance	-20% to +80% (± 20% available on request)				
Operating Temperature Range	-30°C to +85°C				
Maximum Capacitance Change	-82% to + 22%				
Rated Voltage	4, 6.3, 10, 16, 25 & 50 VDC				
Dissipation Factor (DF)	Pls refer to DF table on page No. 6				
Insulation Resistance (+25℃, RVDC)	10,000 M Ω min. or 500 Ω -F min., whichever is smaller				
Insulation Resistance (+85℃, RVDC)	1,000 M Ω min. or 50 Ω -F min., whichever is smaller				

Multi-Layer Ceramic Capacitor

C-S3-5-00

■ Product Range and Thickness

CLASS														Class	II_												
TYPE													St	tanda	rd												
T.C.														Y5V													
SIZE		603			1005					1608					2012					3216					3225		
(EIA)	02				0402					0603					0805					1206					1210		
RV	4V	6.3V	6.3V	10V	16V	25V		6.3V		16V			6.3V		16V		50V	6.3V	10V				6.3V	10V	16V	25V	50V
10 n			В	В	В	В	В		D	D	D	D	С	С	С	С	CE			Е	Е	Е					
12 n			В	В	В	В	В		D	D	D	D	С	С	O	С	CE			E	E	E					
15 n			В	В	В	В	В		D	D	D	D	С	С	O (С	CE			E	E	E					
18 n	•		В	В	В	В	В		D	D	D	D	С	С	C	С	CE			E	E	E	-				
22 n	Α	Α	B	B B	В	B B	В		D	D	D	D D	C	C	С	C	C E			E	E	E					
27 n	^	^					В		D	D	D		С		С	С	CE					E					
33 n 39 n	Α	Α	B	B B	B	B B	В		D D	D D	D D	D D	С	C	C	С	CE			E	E	E					
47 n	Α	Α	В	В	В	В			D D	D	D	D	С	С	C	С	CE			E	E	E					
56 n	А	A	В	В	В	Б			D	D	D	D	С	С	C	С	CE		1	E	E	E					\vdash
68 n			В	В	В				D D	D	D	D	С	С	C	С	CE		1	E	E	E					\vdash
82 n			В	В	В				D	D	D	D	С	C	C	С	CE			Е	E	E					
100 n	Α	Α	В	В	В	В			D	D	D	D	С	С	С	С	C			E	E	E					\vdash
120 n		Α.	В	В	ם	В			D	D	D	U	E	E	E	E	E		 	E	E	E					\vdash
150 n			В	В					D	D	D	D	E	E	E	E	E			E	E	E					
180 n			В	В					D	D	D	D	E	E	E	E	E			E	E	E					
220 n			В	В	В				D	D	D	D	E	E	E	E	E			E	E	E					
270 n			В	В	_ D				D	D	D	D	E	E	E	E				E	E	E					
330 n			В	В					D	D	D	D	E	E	E	EG	Е			E	E	E					
390 n									D	D			E	E	E	E G	_			E	E	E					
470 n			В	В	В				D	D	D		E	E	E	EG	EG			E	E	E					
560 n									D	D			E	E	Е	EG				Е	E	E					
680 n									D	D			Е	Е	Е	E G				Е	Е	Е					
820 n									D	D			Е	Е	Е	ΕG				Е	Е	Е					
1.0 u			В	В					D	D	D*		Е	Е	Е	ΕG	G		Е	Е	Ι	ı				Ι	
1.2 u																											
1.5 u																											
1.8 u																											
2.2 u								D	D	D			Е	Е	Е	G			Е	Е	G						
2.7 u																											
3.3 u																											
3.9 u																											
4.7 u								D					<u>G</u>	<u>G</u>	E <u>G</u>			<u> </u>	Е	Е	<u>G</u>					<u>G</u>	
5.6 u																											
6.8 u																		ļ									
8.2 u																											
10 u													E G	E <u>G</u>	G			<u>G</u>	<u>G</u>	<u>G</u>	L				G L	L	<u>N</u>
12 u					ļ		ļ						ļ			ļ			ļ						ļ		
15 u																											
18 u																											
22 u					ļ		ļ						<u>G</u>			ļ		G L	G L				<u>N</u>	N	<u>N</u>		Ш
47 u					ļ		ļ						ļ			ļ		<u> </u>	ļ				<u>N</u>	<u>N</u>			Ш
100 u																							<u>P</u>				

- Non-standard capacitance or thickness is available on request
- The thickness might be changed due to technology improvement.

Typical Tolerance

Thick	Thickness (mm) Thickness (mm)		Thick	(ness (mm)	Thick	(ness (mm)	Thickness (mm)		
Code	Class	Code	Class	Code	Class	Code	Class	Code	Class
Α	0.30+/-0.03	M	0.70+/-0.15		0.95+/-0.15	Н	1.50+/-0.20	N	2.00+/-0.20
В	0.50+/-0.05	D	0.80+/-0.10	F	1.15+/-0.20	Р	2.50+/-0.20	R	3.20+/-0.20
С	0.60+/-0.15	Е	0.85+/-0.15	G	1.25+/-0.20	L	1.60+/-0.20		

Special Tolerance

Thickness (mm)		Thic	kness (mm)	Thick	kness (mm)	Thic	kness (mm)	Thic	kness (mm)
Code	Class	Code	Class	Code	Class	Code	Class	Code	Class
<u>G</u>	1.25 -0.20/+0.30	L	1.60 -0.20/+0.30	N	2.00+/-0.30	<u>P</u>	2.50+/-0.30	<u>R</u>	3.20+/-0.30

For Cap $\geq 1\mu F$, Tolerance of dimensions will be enlarged.

Multi-Layer Ceramic Capacitor

C-S3-5-00

■ Taping Amount

	Thickness	Amount per reel								
	Thickness		180	mm (7")	250	mm (10")	330	mm (13")		
Code	Spec	Size(EIA)	Paper	Embossed	Paper	Embossed	Paper	Embossed		
Α	0.30+/-0.03	0603 (0201)	15K							
В	0.50+/-0.05	1005 (0402)	10K				50K			
С	0.60+/-0.15	2012 (0805)	4K		10K		15K			
		3216 (1206)	4K		10K		15K			
D	0.80+/-0.10	1608 (0603)	4K		10K		15K			
D*	0.80+0.15/ -0.10	1608 (0603) 2012 (0805)	4K		10K		15K			
		3216 (1206)	4K 4K		10K 10K		15K 15K			
E	0.85+/-0.15	3225 (1210)	41	3K	TUK		ION	10K		
		4532 (1812)		1K				1010		
_		2012 (0805)		3K						
- 1	0.95+/-0.15	3216(1206)		3K						
	4.45.7.0.00	3216 (1206)		3K				10K		
F	1.15+/-0.20	4520 (1808)		3K						
		2012 (0805)		2K/3K				10K		
		3216 (1206)		3K				10K		
G	1.25 +/-0.20	3225 (1210)		3K						
		4520 (1808)		3K						
		4532 (1812)		1K						
		2012 (0805)		2K/3K				10K		
<u>G</u>	1.25+0.3/-0.2	3216 (1206)		3K				10K		
		3225(1210)		3K						
	4.50.7.0.20	3225 (1210)		2K						
Н	1.50+/-0.20	4520 (1808) 4532 (1812)		2K 1K						
		3216 (1206)		2K						
		3225 (1210)		2K						
L	1.60+/-0.20	4520 (1808)		2K						
		4532 (1812)		1K						
		3216 (1206)		2K						
	4.00+0.00/0.00	3225 (1210)		2K						
L	1.60+0.30/-0.20	4520 (1808)		2K						
		4532 (1812)		1K						
		3216 (1206)		2K/3K						
N	2.00+/-0.20	3225 (1210)		2K						
. \	2.00+/-0.20	4520 (1808)		1K						
	0.00 / 0.00	4532 (1812)		1K						
<u>N</u>	2.00+/-0.30	3225 (1210)		2K						
Р	2.50+/-0.20	3225 (1210)		500pcs/1K						
<u>P</u>	2.50+/-0.30	3225 (1210)		500pcs/1K						
R	3.20+/-0.20			500pcs						
<u>R</u>	3.20+/-0.30		<u> </u>	500pcs						

^{*:} For some products, the thickness spec can be 0.8+0.15/-0.1mm.

Multi-Layer Ceramic Capacitor

C-S3-5-00

■ Y5V Specifications

No.	Ite	m	Sp	ecification			Test Method			
1	Operating Temp	erature Range	-30°C to 85°C				-			
2	Rated Voltage		4V,6.3VDC, 10VD 50VDC	C, 16VDC, 2	25VDC &	voltage	The rated voltage is defined as the maximum voltage, which may be applied continuously to the capacitor.			
3	Appearance		No defects or abno	ormalities.		Visual	inspection			
4	Dimensions		Within the specifie	d dimensio	n.	Using	calipers			
5	Dielectric Stren	gth (Flash)	No defects or abno	ormalities.		rated v	No failure shall be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, the charge and discharge current is less than 50mA.			
6	Insulation Resis	stance (I.R.)	Rated Voltage: <500V To apply rated voltage. I.R. \geq 10G or R ₁ C _R \geq 500 Ω -F Rated Voltage: \geq 500V To apply 500V. (whichever is			DC vo	The insulation resistance shall be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max, and within 1 minute of charging.			
					smaller)					
7	Capacitance	(55)	•		at 1,000 hou		pacitance/D.F. shall be measured at 25° at ncy 1.0±0.2KHz and voltage 1.0±0.2Vrms.			
8	Dissipation Fac	tor (D.F.)	See Y5V DF table on page 6.			*For ca	ap>10uF, measuring frequency 120±10% Hz ltage 0.5±0.1Vrms.			
9	Capacitance Tel Characteristics	mperature	Capacitance change within the specified tolerance –82% to +22%. Reference temperature 25 $^{\circ}$ C.			25℃ \	The ranges of capacitance change compared with 25° C value over the temperature ranges should be within the specified ranges.			
10	Termination Str	ength	No removal of the terminations or marking defect.				a parallel force of 5N to a PCB mounted e for 10±1sec.			
11	Deflection (Ben	ding Strength)	Appearance: No cracking or marking defects. Capacitance change within ±20%.				Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. a. using a eutectic solder then let sit for 48±4 hours. Then apply a force in the direction shown in Fig. b. The soldering shall be done with the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
10			Fig. a.	φ 4.5 ↓ 40 ↓ ±:1.6mm	Size a 1005 0.4 1608 1.0 2012 1.2 3216 2.2 3225 2.2	b C 1.5 0.5 3.0 1.2 4.0 1.65 5.0 2.0 5.0 2.9	Pressurizing speed : 1.0mm/sec. Pressurize Pressurize Flexure : 1mm Capaciance Meter 45 45 Fig. b.			
12	Solderability of		90% of the terminations is to be soldered evenly and continuously.			contair to 180	se the test capacitor into a methanol solution hing rosin for 3 to 5 seconds, preheat it 150 $^{\circ}$ C for 2 to 3 minutes and immerse it into solder of 230 ± 5 $^{\circ}$ C for 5±1seconds.			
13		Appearance	No marking defect	S			at the capacitor at 120 to 150° C* for 1 minute.			
	Soldering Heat	Cap. Change	To satisfy the specified initial value at 270±5°C for 1 temperature for 4				Immerse the capacitor in an eutectic solder solution at 270±5°C for 10±1 seconds. Let sit at room			
		D.F.				rature for 48±4 hours, then measure.				
		I.R.	I.R. \ge 10,000MΩ or R _i C _R \ge 500Ω-F. (whichever is smaller) * Preheat 150 to 200°C for size \ge 321 Initial measurement: perform a heat to 150+0/-10°C for one hour and then less than 150+0/-10°C for one hour and then 150+0/-10°C for one hour and then 150+0/-10°C for one hour and 150+0/-				measurement : perform a heat treatment at /-10°C for one hour and then let sit for 48±4 at room temperature. Perform the initial			

Multi-Layer Ceramic Capacitor

C-S3-5-00

Continued from previous page.

14		• • •		Solder the capacitor to supporting jig (glass epoxy				
	Cycle (Thermal	Cap. Change	Within ±20%	board) and perform the five cycles according to the four heat treatments listed in the following table. Let				
	Shock)	D.F.	To satisfy the specified initial value	sit for 48±4hrs at room temperature, then measure.				
		I.R.	More than 10,000M Ω or R _i C _R $>$ 500 Ω -F (whichever is smaller)	Step 1: Minimum operating temperature 30±3min Step 2: Room temperature 2~3 min Step 3: Maximum operating temperature 30±3min Step 4: Room temperature 2~3min				
				Initial measurement : perform a heat treatment at 150+0/-10℃ for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement.				
15	Humidity Load	Appearance	No marking defects	Apply the rated voltage at 40±2℃ and 90 to 95%				
	Cap. Change		Within ±30%	humidity for 500±12 hours. Remove and let sit for 48±4 hours at room temperature, then measure.				
		D.F.	150% max. of initial value	The charge/discharge current is less than 50mA.				
		I.R.	More than $500 M\Omega$ or $R_i C_R \ge 25 \Omega$ -F. (whichever is smaller)	Pre-treatment: Apply the rated DC voltage for 1 hr				
		Dielectric Strength	No failure	at 40±2°C and 90 to 95% humidity. Remove and let sit for 48±4 hours, then perform the initial measurement.				
16	High	Appearance	No marking defects	Apply *200% of the rated voltage for 500±12 hours				
	Temperature Load	Cap. Change	Within ±30%	at the maximum operating temperature ± 3°C. Let sit for 48±4 hours at room temperature, then				
	(Life Test)	D.F.	150% max. of initial value	measure. The charge/discharge current is less than				
		I.R.	More than 1 G Ω or $R_iC_R\!\ge\!50\Omega\text{-F.}$ (whichever is smaller)					
				Pre-treatment: Apply 200% of the rated voltage for 1 hr at maximum operating temperature ±3°C. Remove and let sit for 48±4 hours, then perform the initial measurement.				
				*some of the parts are applicable in rated voltage *1.5. please refer to table 1				

Multi-Layer Ceramic Capacitor

C-S3-5-00

■ Y5V DF (tan δ) Table

T.C	Rated Voltage	Size	Capacitance	D.F. Max.
		0603	ALL	16%
	4V	1005	ALL	20%
		0603	ALL	16%
		4005	≦220n	12.5%
	6.3V	1005	>220n	16%
	0.5 V	1608/3225	ALL	12.5%
		2012/3216	ALL	16%
		1005/1608/3225	ALL	12.5%
		2012	<10u	12.5%
	10V	2012	10u	30%
	10 V		≦4.7u	12.5%
		3216	4.7u < Cp < 22u	16%
			22u	30%
		1005	ALL	9%
Y5V			≦100n	7.0%
130	16V	1608	100n < Cp ≤ 220n	9.0%
			>220n	12.5%
	10 V	2012	ALL	9.0%
		3216/3225	≦2.2u	9.0%
		3210/3223	>2.2u	12.5%
		3225	4.7u≦Cp≦22u	12.5%
		1005	<100n	7.0%
			<100n	5.0%
		1608	100n	7.0%
			>100n	9.0%
	25V/50V		<330n	5.0%
	257/507	2012	330n	7.0%
			>330n	9.0%
			<1u	5.0%
		3216/3225	1u	7.0%
			>1u	9.0%

■ Table 1

TC	Product Range
	1005 (EIA 0402): C > 0.47 uF
	1608 (EIA 0603): C > 1.0 uF
Y5V	2012 (EIA 0805): C > 4.7 uF
	3216 (EIA 1206): C > 10 uF
	3225 (EIA 1210): C > 22 uF