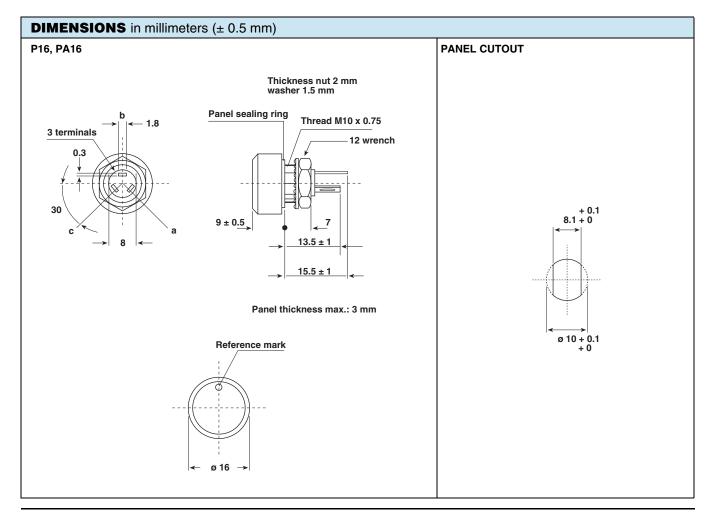


P16, PA16

Vishay Sfernice


Knob Potentiometer

The P16 is a revolutionary concept in panel mounted potentiometers. This unique design consists of a knob driving and incorporating a cermet potentiometer. Only the mounting hardware and terminals are situated on the back side of the panel reducing to a minimum the required clearance.

FEATURES

- 1 W at 40 °C
- Test according to CECC 41300
- P16 Version for professional and industrial applications (cermet)
- PA16 Version for professional audio applications (conductive plastic)
- Compact (integrated)
- Safety in use due to good insulation: > $10^4\,M\Omega$ 500 V_{DC}
- High dielectric strength: 2500 V_{RMS}
- Fully sealed and panel sealed
- Metallic or plastic knob options
- Custom knob on request
- Compliant to RoHS directive 2002/95/EC

Vishay Sfernice

Knob Potentiometer

ELECTRICAL SPECIFICATIONS			
	P16	PA16	
Resistive Element	Cermet	Conductive plastic	
Electrical Travel	270° ± 10°	270° ± 10°	
Power Rating Chart	0.25 0.25 0.20 0.20 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 4 4 4 4 4 4 5 4 7 4 80 100 120 140 140 MPERATURE IN °C 140	
Circuit Diagram	$ \overset{a}{\underset{(1)}{\overset{b}{\overset{b}{\overset{b}{\overset{b}{\overset{b}{\overset{c}{\overset{a}{\overset{a}{\overset{b}{\overset{b}{\overset{b}{\overset{c}{\overset{a}{\overset{b}{\overset{c}{\overset{a}{\overset{b}{\overset{c}{\overset{a}}{\overset{c}{\overset{a}}{\overset{c}{\overset{a}}{\overset{c}{\overset{a}}{\overset{a}}{\overset{a}}{\overset{c}{\overset{a}}{\overset{a}}{\overset{c}}{\overset{a}}}{\overset{a}}{\overset{a}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}}{\overset{a}}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}}{\overset{a}}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}{\overset{a}}{\overset{a}}}{\overset{a}}}{\overset{a}}{\overset{a}}{}}{\overset{a}}{\overset{a}}{\overset{a}}}{\overset{a}}{\overset{a}}}{\overset{a}}}{\overset{a}}}{\overset{a}}}{\overset{a}}}{\overset{a}}{}}$	cw cw	
Resistance Laws		A L L 60 80 100 WISE SHAFT ROTATION	
Resistance Range	22 Ω to 10 M Ω	1 k Ω to 1 M Ω	
logarithmic laws	100 Ω to 2.2 MΩ	470 Ω to 500 kΩ	
Standard Series E3	1 - 2.2 - 4.7 and on request 1 - 2 - 5	1 - 2.2 - 4.7	
Tolerance standard	± 20 %	± 20 %	
on request	± 10 %	\pm 10 % (1 kΩ to 100 kΩ)	
Power Rating logarithmic	1 W at + 40 °C 0.5 W at + 40 °C	0.5 W at + 40 °C	
Temperature Coefficient (Typical)	± 150 ppm/°C	0.25 W at + 40 °C ± 1000 ppm/°C	
Dielectric Strength (RMS)	2500 V	2500 V	
Limiting Element Voltage (Linear Law)	350 V	350 V	
Insulation Resistance (500 V _{DC})	$\geq 10^4 \mathrm{M\Omega}$	≥ 10 ⁴ MΩ	
Contact Resistance Variation	$\frac{2}{3}$ % Rn or 3 Ω	2 % Rn or 3 Ω	
End Resistance (Typical)	1 Ω	1 Ω	
	1 24	1 Ω 10 ⁶ ΜΩ	

Vishay Sfernice

MECHANICAL SPECIFICATION	CATIONS					
Mechanical Travel	$300^{\circ} \pm 5^{\circ}$					
Operating Torque	2 Ncm typical					
End Stop Torque	25 Ncm maximum					
Max. Tightening Torque of Mounting Nut	250 Ncm maximum					
Unit Weight	4.5 g typical					

ENVIRONMENTAL SPECIFICATIONS						
	Metallic Knob	Plastic Knob				
Temperature Range	- 40 °C to 125 °C - 40 °C to 85 °C					
Climatic Category	40/100/56	40/85/56				
Sealing	Sealed container and panel sealed					
Protection Grades	IP67					

MARKING

- Ohmic value, tolerance, resistance law
- Manufacturing date

PACKAGING

• Carton box of 20 pieces

CONTROL KNOB

Black metallic knob (NM).

Black plastic knob (NP).

For white and blue color see ordering information.

Other dimensions, shapes, colors of control knobs are manufactured on request - please consult Vishay.

Other reference marks (shapes, colors) and legends can be printed on plastic knob on request - please consult Vishay.

P16	P16 STANDARD RESISTANCE ELEMENT DATA								
STAN-		LINEAR LA	W		TYP.				
DARD RESIS- TANCE VALUES	MAX. POWER AT 40 °C	Max. Voltage	Max. Cur. Through Wiper	MAX. POWER AT 40 °C	Max. Voltage	Max. Cur. Through Wiper	TCR - 40 °C		
Ω	W	v	mA	W	v	mA	10 ⁻⁶ /°C		
22 47 100 220 470 1K 2.2K 4.7K 10K 22K 47K 100K 220K 470K 10M 2.2M 4.7M 10M	1 1 0.56 0.26 0.05 0.02 0.01	$\begin{array}{c} 4.69\\ 6.85\\ 10\\ 14.8\\ 21.7\\ 31.6\\ 46.9\\ 68.5\\ 100\\ 148\\ 217\\ 316\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350$	$\begin{array}{c} 213\\ 146\\ 100\\ 67.4\\ 46.1\\ 31.6\\ 21.3\\ 14.6\\ 10\\ 6.74\\ 4.61\\ 3.16\\ 1.59\\ 0.75\\ 0.35\\ 0.35\\ 0.16\\ 0.07\\ 0.012 \end{array}$	0.5 0.5 0.26 0.12 0.056	7.1 10.5 15.3 22.4 33.2 48.5 70.7 105 153 224 332 350 350 350	71 48 32.6 22.4 15.1 10.3 7.07 4.77 3.26 2.24 1.51 0.74 0.35 0.16	± 150		

PA16	PA16 STANDARD RESISTANCE ELEMENT DATA									
STAN-		LINEAR LA	W	LOG LAW						
DARD RESIS- TANCE VALUES	MAX. POWER AT 40 °C		Max. Cur. Through Wiper	MAX. POWER AT 70 °C		Max. Cur. Through Wiper	TYP. TCR - 55℃ + 125 ℃			
Ω	W	v	mA	W	V	mA	ppm/°C			
470 1K 2.2K 4.7K 10K 22K 47K 100K 220K 470K 1M	0.5 0.5 0.26 0.12	22.4 33.2 48.5 79.7 105 153 224 332 350 350	22.4 15.1 10.3 7.07 4.77 3.26 2.24 1.51 0.74 0.35	0.25 0.25	10.8 15.8 23.5 34.3 50.0 74 108 158 235 343	23.1 16 11 7 5.0 3.4 2.3 1.6 1.1 0.7	± 1000			

Vishay Sfernice

PERFORMANCE							
TESTS	CONDITIONS	TYPICAL VALUES A	TYPICAL VALUES AND DRIFTS				
TESTS	CONDITIONS	∆ R_T/R_T (%)	∆ R₁₋₂/R₁₋₂ (%)				
Load Life	1000 h at Pn 90'/30' cycle at + 40 °C	$\begin{array}{c} \pm 5 \ \% \\ \\ \text{Insulation resistance:} > 10^4 \ M\Omega \\ \text{Contact res. variation:} < 2 \ \% \ Rn \end{array}$	-				
Long Term Damp Heat56 days40 °C, 93 % HR		\pm 2 % Insulation resistance: > $10^4M\Omega$	±1%				
Shock 50 g at 11 ms 3 successive shocks in 3 axes		± 0.2 %	± 0.5 %				
Vibration10 Hz to 55 Hz0.75 mm or 10 g during 6 h		± 0.2 %	$\Delta V_{1\text{-}2} / \Delta V_{1\text{-}3} \leq \pm 0.5 \%$				
Rotational Life	50 000 cycles	± 5 % Contact res. variation: < 2 % Rn	-				

ORDERI	ORDERING INFORMATION									
P 1	6 N P	2 2 3	MA	B 1 5						
MODEL	STYLE	OHMIC VALUE	TOLERANCE	TAPER	PACKAGING CODE	SPECIAL NUMBER				
P16 = Cermet	NM: Metallic black NP: Plastic black WM: Metallic white	$223 = 22 \text{ k}\Omega$ for ohmic value range see	$M = \pm 20 \%$ On request	A: Linear L: Clockwise logarithmic F: Inverse clockwise logarithmic	B15 = Box of 20 pieces	(If applicable) Given by Vishay				
PA16 = Conductive plastic	WP: Plastic white BP: Plastic blue	ELECTRICAL SPECIFICATION	K = ± 10 %			for custom design				

PART NUMBER DESCRIPTION (for information only)								
P16	NP	22 k Ω	20 %	Α		во		e3
MODEL	STYLE	VALUE	TOLERANCE	TAPER	SPECIAL	PACKAGING	SPECIAL	LEAD (Pb)-FREE

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.