32,768-word × 8-bit High Speed CMOS Static RAM

The Hitachi HM62256B is a CMOS static RAM organized 32-kword \times 8-bit. It realizes higher performance and low power consumption by employing 0.8 µm Hi-CMOS process technology. The device, packaged in 8 \times 14 mm TSOP, 8 \times 13.4 mm TSOP with thickness of 1.2 mm, 450-mil SOP (foot print pitch width), 600-mil plastic DIP, or 300-mil plastic DIP, is available for high density mounting. It offers low power standby power dissipation; therefore, it is suitable for battery backup systems.

Features

· High speed

Fast access time: 70/85/100/120 ns (max)

· Low power

Standby: 1.5 µW (typ)

Operation: 25 mW (typ) (f = 1 MHz)

• Single 5 V supply

Completely static memory

No clock or timing strobe required

• Equal access and cycle times

• Common data input and output

Three state output

• Directly TTL compatible

All inputs and outputs

· Capability of battery back up operation

Ordering Information

Type No.	Access tim	e Package
HM62256BLP-7	70 ns	600-mil
HM62256BLP-8	85 ns	28-pin
HM62256BLP-10	100 ns	plastic DIP
HM62256BLP-12	120 ns	(DP-28)
HM62256BLP-7SL	70 ns	
HM62256BLP-8SL	85 ns	
HM62256BLP-10SL	100 ns	
HM62256BLP-12SL	120 ns	
HM62256BLSP-7	70 ns	300-mil
HM62256BLSP-8	85 ns	28-pin
HM62256BLSP-10	100 ns	plastic DIP
HM62256BLSP-12	120 ns	(DP-28NA)
HM62256BLSP-7SL	70 ns	
HM62256BLSP-8SL	85 ns	
HM62256BLSP-10SL	100 ns	
HM62256BLSP-12SL	120 ns	
HM62256BLFP-7T	70 ns	450-mil
HM62256BLFP-8T	85 ns	28-pin
HM62256BLFP-10T	100 ns	plastic SOP
HM62256BLFP-12T	120 ns	(FP-28DA)
HM62256BLFP-7SLT	70 ns	
HM62256BLFP-8SLT	85 ns	
HM62256BLFP-10SLT	100 ns	
HM62256BLFP-12SLT	120 ns	
HM62256BLT-8	85 ns	8 mm × 14 mm
HM62256BLT-10	100 ns	32-pin TSOP
HM62256BLT-12	120 ns	(TFP-32DA)
HM62256BLT-7SL	70 ns	
HM62256BLT-8SL	85 ns	
HM62256BLTM-8	85 ns	8 mm × 13.4 mm
HM62256BLTM-7SL	70 ns	28-pin TSOP (TFP-28DA)
HM62256BLTM-8SL	85 ns	•

Pin Arrangement

HM62256B Series

Function

Output enable

No connection

Power supply

Ground

Pin Description

Symbol	Function	Symbol
A0 – A14	Address	OE
I/O0 – I/O7	Input/output	NC NC
CS	Chip select	V _{CC}
WE	Write enable	V _{SS}

Block Diagram

HM62256B Series

Function Table

WE	CS	ŌĒ	Mode	V _{CC} current	I/O pin	Ref. cycle
X	Н	Х	Not selected	I _{SB} , I _{SB1}	High-Z	_
Н	L	Н	Output disable	I _{CC}	High-Z	_
Н	L	L	Read	I _{CC}	Dout	Read cycle (1)–(3)
L	L	Н	Write	I _{CC}	Din	Write cycle (1)
L	L	L	Write	I _{CC}	Din	Write cycle (2)

Note: X: H or L

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage*1	V _{CC}	-0.5 to +7.0	V
Terminal voltage ^{*1}	V _T	-0.5^{*2} to $V_{CC} + 0.3^{*3}$	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to + 70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	-10 to +85	°C

Note: 1. Relative to V_{SS} 2. V_{T} min: -3.0 V for pulse half-width ≤ 50 ns

3. Maximum voltage is 7.0 V

Recommended DC Operating Conditions (Ta = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5.0	5.5	V
	V _{SS}	0	0	0	V
Input high (logic 1) voltage	V _{IH}	2.2	_	V _{CC} +0.3	V
Input low (logic 0) voltage	V _{IL}	-0.5 ^{*1}	_	0.8	V

Note: 1. V_{IL} min: -3.0 V for pulse half-width ≤ 50 ns

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ±10%, V_{SS} = 0 V)

Parameter		Symbol	Min	Typ*1	Max	Unit	Test conditions
Input leakage current		IILII	_	_	1	μΑ	$Vin = V_{SS} \text{ to } V_{CC}$
Output leakage current		I _{LO}	_	_	1	μΑ	$\overline{\text{CS}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{OE}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{WE}} = \text{V}_{\text{IL}},$ $\text{V}_{\text{I/O}} = \text{V}_{\text{SS}} \text{ to V}_{\text{CC}}$
Operating power supply current		I _{CC}	_	6	15	mA	CS = V _{IL} , others = V _{IH} /V _{IL} lout = 0 mA
Average	HM62256B-7	I _{CC1}	_	33	60	mA	min cycle, duty = 100 %, $I_{I/O}$ = 0 mA
operating power supply current	HM62256B-8		_	29	50		$CS = V_{IL}$, others = V_{IH}/V_{IL}
	HM62256B-10		_	26	50		
	HM62256B-12		_	24	45		
		I _{CC2}	_	5	15	mA	Cycle time = 1 μ s, $I_{I/O}$ = 0 mA \overline{CS} = V_{IL} , V_{IH} = V_{CC} , V_{IL} = 0
Standby V ₀	CC current	I _{SB}	_	0.3	2	mA	CS = V _{IH}
		I _{SB1}	_	0.3	100	μΑ	$\frac{\text{Vin} \ge 0 \text{ V,}}{\overline{\text{CS}}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V,}$
			_	0.3*2	50*2		03 ≥ v _{CC} = 0.2 v,
Output low voltage		V _{OL}	_	_	0.4	V	I _{OL} = 2.1 mA
Output high	n voltage	V _{OH}	2.4	_	_	V	I _{OH} = -1.0 mA

Notes: 1. Typical values are at $V_{CC} = 5.0 \text{ V}$, Ta = +25°C and not guaranteed. 2. This characteristics is guaranteed only for L-SL version.

Capacitance $(Ta = 25^{\circ}C, f = 1.0 \text{ MHz})^{*1}$

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input capacitance	Cin	_	_	8	pF	Vin = 0 V
Input/output capacitance	C _{I/O}	_	_	10	pF	V _{I/O} = 0 V

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, unless otherwise noted.)

Test Conditions

- Input pulse levels: 0.8 V to 2.4 V
- Input and output timing reference level: 1.5 V
- Input rise and fall times: 5 ns
- Output load: 1 TTL Gate + CL (100 pF) (Including scope & jig)

Read Cycle

		HM62	256B-7	HM62	256B-8	HM62	256B-10	HM62	256B-12		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	70	_	85	_	100	_	120	_	ns	
Address access time	t _{AA}	_	70	_	85	_	100	_	120	ns	
Chip select access time	t _{ACS}	_	70	_	85	_	100	_	120	ns	
Output enable to output valid	t _{OE}	_	40	_	45	_	50	_	60	ns	
Chip selection to output in low-Z	t _{CLZ}	10	_	10	_	10	_	10	_	ns	2
Output enable to output in low-Z	t _{OLZ}	5	_	5	_	5	_	5	_	ns	2
Chip deselection to output in high-Z	t _{CHZ}	0	25	0	30	0	35	0	40	ns	1, 2
Output disable to output in high-Z	t _{OHZ}	0	25	0	30	0	35	0	40	ns	1, 2
Output hold from address change	t _{OH}	5	_	5	_	10	_	10	_	ns	

Read Timing Waveform (1)*3

Read Timing Waveform (2)*3*4*6

Read Timing Waveform (3)*3 *5 *6

Notes: 1. t_{CHZ} and t_{OHZ} defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

- 2. This parameter is sampled and not 100 % tested.
- 3. WE is high for read cycle.
- 4. Device is continuously selected, $\overline{CS} = V_{IL}$
- 5. Address must be valid prior to or coincident with $\overline{\text{CS}}$ transition Low.
- 6. $\overline{OE} = V_{II}$

Write Cycle

		HM62256B-7 HM62256B-8			HM62256B-10 HM62256B-12					
Symbol	Mir	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
t _{WC}	70	_	85	_	100	_	120	_	ns	
t _{CW}	60	_	75	_	80	_	85	_	ns	2
t _{AS}	0	_	0	_	0	_	0	_	ns	3
t _{AW}	60	_	75	_	80	_	85	_	ns	
t _{WP}	50	_	55	_	60	_	70	_	ns	1, 12
t _{WR}	0	_	0	_	0	_	0	_	ns	4
t _{WHZ}	0	25	0	30	0	35	0	40	ns	10, 11
t _{DW}	30	_	35	_	40	_	50	_	ns	
t _{DH}	0	_	0	_	0	_	0	_	ns	
t _{OW}	5	_	5	_	5	_	5	_	ns	10
t _{OHZ}	0	25	0	30	0	35	0	40	ns	10, 11
	twc tcw tas taw twp twp twr twhz tbw tbh	t _{WC} 70 t _{CW} 60 t _{AS} 0 t _{AW} 60 t _{WP} 50 t _{WR} 0 t _{WHZ} 0 t _{DW} 30 t _{DH} 0 t _{OW} 5	t _{WC} 70 — t _{CW} 60 — t _{AS} 0 — t _{AW} 60 — t _{WP} 50 — t _{WR} 0 — t _{WHZ} 0 25 t _{DW} 30 — t _{DH} 0 —	t _{WC} 70 — 85 t _{CW} 60 — 75 t _{AS} 0 — 0 t _{AW} 60 — 75 t _{WP} 50 — 55 t _{WR} 0 — 0 t _{WHZ} 0 25 0 t _{DW} 30 — 35 t _{DH} 0 — 0 t _{OW} 5 — 5	t _{WC} 70 — 85 — t _{CW} 60 — 75 — t _{AS} 0 — 0 — t _{AW} 60 — 75 — t _{WP} 50 — 55 — t _{WR} 0 — 0 — t _{WHZ} 0 25 0 30 t _{DW} 30 — 35 — t _{DH} 0 — 0 — t _{OW} 5 — 5 —	tWC 70 — 85 — 100 tCW 60 — 75 — 80 tAS 0 — 0 — 0 tAW 60 — 75 — 80 tWP 50 — 55 — 60 tWR 0 — 0 — 0 tWHZ 0 25 0 30 0 tDW 30 — 35 — 40 tDH 0 — 0 — 0 tOW 5 — 5 — 5	t _{WC} 70 — 85 — 100 — t _{CW} 60 — 75 — 80 — t _{AS} 0 — 0 — 0 — t _{AW} 60 — 75 — 80 — t _{WP} 50 — 55 — 60 — t _{WR} 0 — 0 — 0 — t _{WHZ} 0 25 0 30 0 35 t _{DW} 30 — 35 — 40 — t _{OW} 5 — 5 — 5 — 5 —	tWC 70 85 — 100 — 120 tCW 60 — 75 — 80 — 85 tAS 0 — 0 — 0 — 0 tAW 60 — 75 — 80 — 85 tWP 50 — 55 — 60 — 70 tWR 0 — 0 — 0 — 0 tWHZ 0 25 0 30 0 35 0 tDW 30 — 35 — 40 — 50 tDH 0 — 0 — 0 — 0 tOW 5 — 5 — 5 — 5	tWC 70 — 85 — 100 — 120 — tCW 60 — 75 — 80 — 85 — tAS 0 — 0 — 0 — 0 — tAW 60 — 75 — 80 — 85 — tWP 50 — 55 — 60 — 70 — tWR 0 — 0 — 0 — 0 — tWHZ 0 25 0 30 0 30 0 35 0 40 tDW 30 — 35 — 40 — 50 — tDH 0 — 0 — 0 — 0 — tOW 5 — 5 — 5 — 5 —	tWC 70 — 85 — 100 — 120 — ns tCW 60 — 75 — 80 — 85 — ns tAS 0 — 0 — 0 — 0 — ns tAW 60 — 75 — 80 — 85 — ns tWP 50 — 55 — 60 — 70 — ns tWR 0 — 0 — 0 — 0 — ns tWHZ 0 25 0 30 0 30 0 35 0 40 ns 0 — ns tDW 30 — 35 — 40 — 50 — ns tDH 0 — 0 — 0 — 0 — ns tOW 5 — 5 — 5 — 5 — 5 — ns

Write Timing Waveform (1) (OE Clock)

Write Timing Waveform (2) $(\overline{OE} \text{ Low Fixed})^{*12}$

Notes: 1. A write occurs during the overlap(t_{WP}) of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$. A write begins at the later transition of $\overline{\text{CS}}$ going low or $\overline{\text{WE}}$ going low. A write ends at the earlier transition of $\overline{\text{CS}}$ going high or $\overline{\text{WE}}$ going high. t_{WP} is measured from the beginning of write to the end of write.

- 2. t_{CW} is measured from \overline{CS} going low to the end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the earlier of WE or CS going high to the end of write cycle.
- 5. During this period, I/O pins are in the output state so that the input signals of the opposite phase to the outputs must not be applied.
- 6. If the $\overline{\text{CS}}$ low transition occurs simultaneously with the $\overline{\text{WE}}$ low transition or after the $\overline{\text{WE}}$ transition, the outputs remain in a high impedance state.
- 7. Dout is the same phase of the write data of this write cycle.
- 8. Dout is the read data of next address.
- 9. If $\overline{\text{CS}}$ is low during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the output must not be applied to them.
- 10. This parameter is sampled and not 100% tested.
- 11. t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.
- In the write cycle with OE low fixed, t_{WP} must satisfy the following equation to avoid a problem of data bus contention, t_{WP} ≥ t_{WHZ} max + t_{DW} min.

HM62256B Series

Low V_{CC} **Data Retention Characteristics** (Ta = 0 to $+70^{\circ}$ C)

Parameter	Symbol	Min	Typ* ¹	Max	Unit	Test conditions
V _{CC} for data retention	V _{DR}	2.0	_	5.5	V	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V},$ $\text{Vin } \ge 0 \text{ V}^{*5}$
Data retention current	I _{CCDR}	_	0.2	30*2	μA	$V_{CC} = 3.0 \text{ V, Vin} \ge 0 \text{ V}^{*5}$
		_	0.2	10 ^{*3}	μA	$\overline{\text{CS}} \ge V_{\text{CC}} - 0.2 \text{ V},$
Chip deselect to data retention time	tCDR	0	_	_	ns	See retention waveform
Operation recovery time	t _R	t _{RC} *4	_	_	ns	

Low V_{CC} Data Retention Timing Waveform

Notes: 1. Typical values are at $V_{CC} = 3.0 \text{ V}$, $Ta = 25^{\circ}\text{C}$ and not guaranteed.

- 2. 10 μ A max at Ta = 0 to + 40°C.
- 3. 3 μ A max at Ta = 0 to + 40 °C. (only for L-SL version)
- 4. t_{RC} = read cycle time.
- 5. $\overline{\text{CS}}$ controls address buffer, $\overline{\text{WE}}$ buffer, $\overline{\text{OE}}$ buffer, and Din buffer. If $\overline{\text{CS}}$ controls data retention mode, Vin levels (address, $\overline{\text{WE}}$, $\overline{\text{OE}}$, I/O) can be in the high impedance state.