Am26LS29

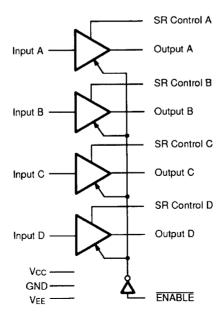
Advanced Micro Devices

Quad Three-State Single Ended RS-423 Line Driver

DISTINCTIVE CHARACTERISTICS

- Four single ended line drivers in one package for maximum package density
- Output short-circuit protection
- Individual rise time control for each output
- High capacitive load drive capability
- Low Icc and IEE power consumption (26mW/driver typ.)
- Meets all requirements of RS-423

- Three-state outputs for bus oriented systems
- Outputs do not clamp line with power off.
 Outputs are in high-impedance state over entire transmission line voltage range of RS-423
- Low current PNP inputs compatible with TTL, MOS and CMOS
- Available in military and commercial temperature range
- Advanced low power Schottky processing


GENERAL DESCRIPTION

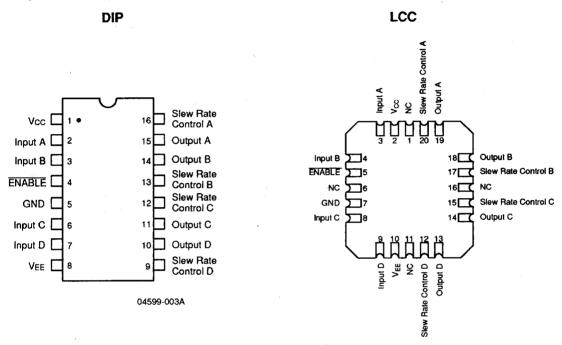
The Am26LS29 is a quad single ended line driver, designed for digital data transmission. The Am26LS29 meets all the requirements of EIA Standard RS-423 and Federal STD 1030. It features four buffered outputs with high source and sink current, and output short circuit protection.

A slew rate control pin allows the use of an external capacitor to control slew rate for suppression of near end cross talk to receivers in the cable. The Am26LS29 has three-state outputs for bus oriented systems. The outputs in the high-impedance state will not clamp the line over the transmission line voltage of RS-423. A typical full duplex system would use the Am26LS29 line driver and up to twelve Am26LS32 line receivers or an Am26LS32 line receiver and up to thirty-two Am26LS29 line drivers with only one enabled at a time and all others in the three-state mode.

The Am26LS29 is constructed using advanced low-power Schottky processing.

BLOCK DIAGRAM

04599-001A

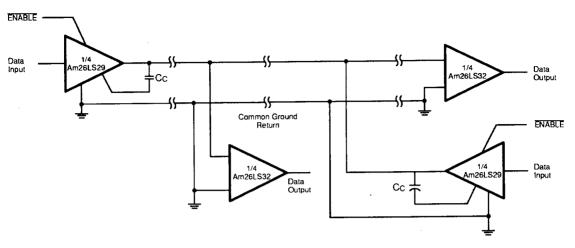


RELATED PRODUCTS

Part Number	Description
26LS30	Dual Differential RS-422 Party Line/Quad Single Ended RS-423 Line Driver
26LS32	Quad Differential Line Receiver
26LS33	Quad Differential Line Receiver

CONNECTION DIAGRAMS

Top View

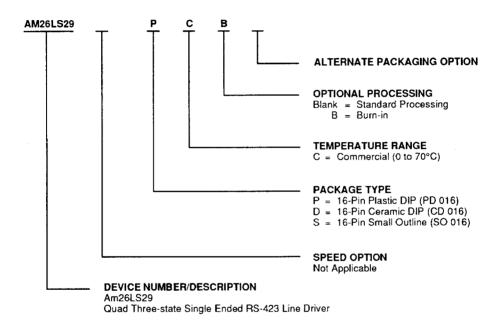


04599-002A

Note:

Pin 1 is marked for orientation

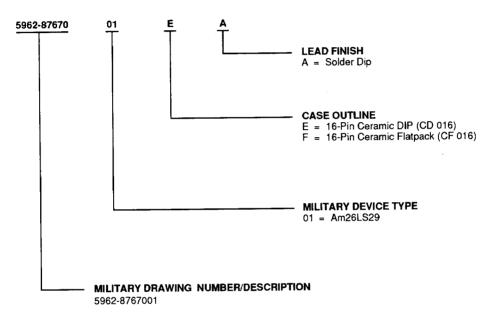
TYPICAL APPLICATION



04599-005A

ORDERING INFORMATION Standard Products

AMD products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:


AM26LS29	PC, PCB, DC, DCB, SC
----------	----------------------------

Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

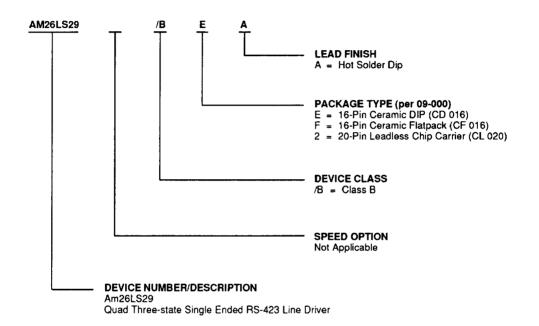
ORDERING INFORMATION Standard Military Drawing Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. Standard Military Drawing (SMD)/DESC products are fully compliant with MIL-STD-883C requirements. The ordering number for SMD/DESC (Valid Combination) is formed by a combination of:

5962-8767001 EA, FA

Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.


Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

ORDERING INFORMATION APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The ordering number (Valid Combination) is formed by a combination of:

AM26LS29	/BEA
	/BFA
	/B2A

Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature Range -65°C to +165°C

Supply Voltage:

V+ 7.0 V V- -7.0 V

Power Dissipation 165 mW Input Voltage -1.5 to +15 V

Enable Voltage ±15 V
Output Sink Current 300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Temperature (T_A) 0°C to +70°C Supply Voltage (Vcc) +4.75 V to +5.25 V (VFF) -4.75 V to -5.25 V

Military (M) Devices

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating range unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Unit
Vo	Output Voltage	Vcc = VEE = Min.		4.0	4.4	6.0	V V
Vo	- Carpar Voltago	R _L = ∞(Note 3)	VIN = 0.4 V	-4.0	-4.4	-6.0	
∨τ ⊽τ	Output Voltage (Note 4)	$ V_{CC} = V_{EE} = Min.$ R _L = 450 Ω	Vin - 2.4 V	3.6 -3.6	4.1 -4.1		
V _T — V T	Output Unbalance (Note 4)	Vcc = VEE , RL = 4			0.02	0.4	V
lx+			Vo. 10 V			100	μΑ
lx-	Output Leakage Power Off	Vcc = Vee = 0V	Vo10 V			-100	μΑ
ls+	Output Short Circuit Current	Vcc = VEE = Max.	Vin _ 2.4 V	-20	-80	-150	mA
Is-	(Note 6)	Vo - 0 V	Vin = 0.4 V	20	80	150	mA
lcc	Positive Supply Current	V _{IN} = 0.4 V, R _L = ∞ V _{CC} = V _{EE} = Max.	•		18	30	mA
lee	Negative Supply Current	V _{IN} = 0.4 V, R _L = ∞ V _{CC} = V _{EE} = Max.			-10	-22	mA
lo	Off State (High Impedance) Output Current	Vcc = Max Vcc = Vee = Max.	Vo. 10 V			100 -100	μA μA
ViH	High Level Input Voltage	(Note 7)		2.0			V
VIL	Low Level Input Voltage	(Note 7)				0.8	V
		VIN = 2.4 V, Vcc =	VEE = Max.			40	μА
Іін	High Level Input Current	V _{IN} ≤ 15 V, V _{CC} = 5. V _{EE} = -5.0 (Note 5	5 V,			100	μА
lıı.	Low Level Input Current	VIN = 0.4 V, Vcc = VEE = Max.			-30	-200	μΑ
Vı	Input Clamp Voltage	I _{IN} = -12mA, Vcc = V _{EE} = Max.	Min.,			-1.5	٧

Notes:

- 1. Typical limits are at VCC = 5.0 V, VEE = -5.0 V, 25°C ambient and maximum loading.
- 2. Symbols and definitions correspond to EIA RS-423 where applicable.
- 3. Output voltage is +3.9 V minimum and -3.9 V minimum at -55°C.
- 4. This parameter is tested by forcing an equivalent current.
- 5. VEE = -5.0 V due to tester limitation.
- 6. Not more than one output should be shorted at a time. Duration of short circuit test should not exceed one second.
- 7. Input thresholds are tested during DC tests and may be done in combination with testing of other DC parameters.

SWITCHING CHARACTERISTICS ($T_A = +25^{\circ}C$, $V_{CC} = 5.0V$)

Parameter Symbol	Parameter Description	Test Conditions		Min.	Тур.	Max.	Unit
tr	Rise Time	$R_L = 450 \Omega$, $C_L = 500 pF$, Fig. 1	Cc = 50 pF Cc = 0 pF		3.0 120	300	μs ns
tr	Fall Time	R_L = 450 Ω, C_L = 500 pF, Fig. 1	Cc = 50 pF Cc = 0 pF		3.0 120	300	μs ns
tpdh	Output Propagation Delay	$R_L = 450 \Omega$, $C_L = 500 pF$, $C_C = 0 pF$			180	300	ns
t _{pdl}	Output Propagation Delay	$R_L = 450 \Omega$, $C_L = 500 pF$, $C_C = 0 pF$			180	300	ns
tLZ	Output Enable to Output	$R_L = 100 \Omega$, $C_L = 500 pF$,			180	300	
tHZ		$C_C = 0$ pF, Fig. 2		200	350	ns	
tzL		$R_L = 100 \Omega$, $C_L = 500 pF$,			200	350	115
tzн		Cc = 0 pF, Fig. 2			180	300	

AC CHARACTERISTICS ($T_A = -55^{\circ}$ C to +125°C, $V_{cc} = 4.75$ V to 5.5 V)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Unit
tr	Rise Time	R _L = 450 Ω , C _L = 500 pF, C _C = 0 pF			450	μs
tf	Fall Time	$R_L = 450 \Omega$, $C_L = 500 \text{ pF}$, $C_C = 0 \text{ pF}$			450	μs
t pdh	Output Propagation Delay	$R_L = 450 \Omega$, $C_L = 500 pF$, $C_C = 0 pF$			450	ns
t _{pdl}	Output Propagation Delay	$R_L = 450 \Omega$, $C_L = 500 pF$, $C_C = 0 pF$			450	ns
tız	Output Enable to Output	R _L = 100 Ω, C _L = 500 pF, C _C = 0 pF			400	ns
tHZ		$R_L = 100 \Omega$, $C_L = 500 \text{ pF}$, $C_C = 0 \text{ pF}$			400	ns
tzL		$R_L = 100 \Omega$, $C_L = 500 pF$, $C_C = 0 pF$			400	ns
tzн		$R_L = 100 \Omega$, $C_L = 500 \text{ pF}$, $C_C = 0 \text{ pF}$	-		400	ns

4-10 Am26LS29

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

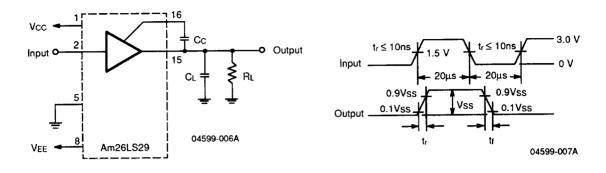
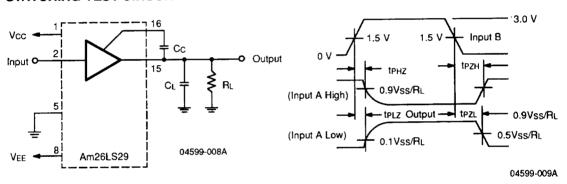
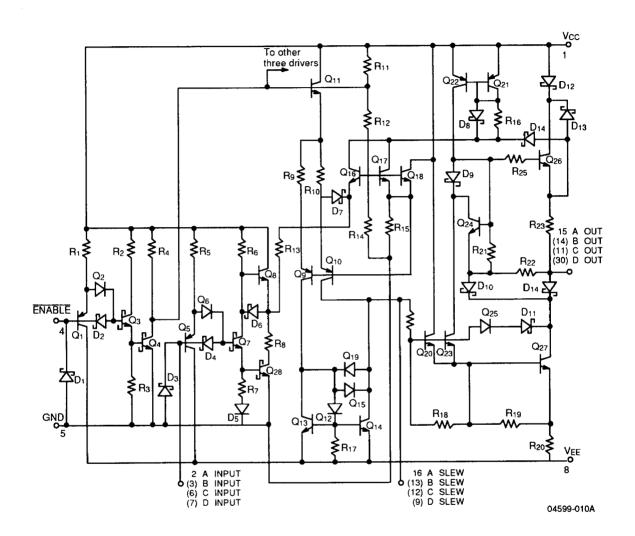
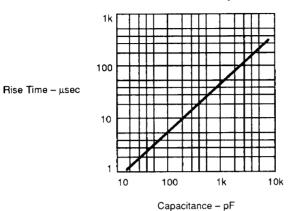


Figure 1. Rise Time Control

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM


Figure 2. Three-State Delays

Am26LS29 EQUIVALENT CIRCUIT

TYPICAL PERFORMANCE CURVES

Slew Rate (Rise or Fall Time) Versus External Capacitor

04599-011A